Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.292
Filtrar
1.
Nat Commun ; 15(1): 3797, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714656

RESUMO

Nucleoporins rich in phenylalanine/glycine (FG) residues form the permeability barrier within the nuclear pore complex and are implicated in several pathological cellular processes, including oncogenic fusion condensates. The self-association of FG-repeat proteins and interactions between FG-repeats play a critical role in these activities by forming hydrogel-like structures. Here we show that mutation of specific FG repeats of Nup98 can strongly decrease the protein's self-association capabilities. We further present a cryo-electron microscopy structure of a Nup98 peptide fibril with higher stability per residue compared with previous Nup98 fibril structures. The high-resolution structure reveals zipper-like hydrophobic patches which contain a GLFG motif and are less compatible for binding to nuclear transport receptors. The identified distinct molecular properties of different regions of the nucleoporin may contribute to spatial variations in the self-association of FG-repeats, potentially influencing transport processes through the nuclear pore.


Assuntos
Microscopia Crioeletrônica , Complexo de Proteínas Formadoras de Poros Nucleares , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Humanos , Mutação , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Poro Nuclear/química , Glicina/química , Glicina/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Sequências Repetitivas de Aminoácidos , Ligação Proteica , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas
2.
Cell Death Dis ; 15(5): 319, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710705

RESUMO

Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.


Assuntos
Argininossuccinato Sintase , Proliferação de Células , Fosfoglicerato Desidrogenase , Serina , Neoplasias de Mama Triplo Negativas , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Serina/metabolismo , Serina/biossíntese , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Animais , Argininossuccinato Sintase/metabolismo , Argininossuccinato Sintase/genética , Linhagem Celular Tumoral , Camundongos Nus , Ubiquitinação , Camundongos , Glicina/metabolismo
3.
Chem Biol Interact ; 391: 110900, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325522

RESUMO

Lung cancer is a highly prevalent and lethal malignancy worldwide, with non-small cell lung cancer (NSCLC) accounting for 85% of cancer-related deaths. In this study, the effects of co-treatment with melatonin and ortho-topolin riboside (oTR) on the cell viability and alteration of metabolites and transcripts were investigated in NSCLC cells using gas chromatography-mass spectrometry (GC-MS) and next-generation sequencing (NGS). The co-treatment of melatonin and oTR exhibited synergistic effects on the reduction of cell viability and alteration of metabolic and transcriptomic profiles in NSCLC cells. We observed that the co-treatment inhibited glycolytic function and mitochondria respiration, and downregulated glycine, serine and threonine metabolism alongside tyrosine metabolism in NSCLC cells. In the glycine, serine and threonine metabolism pathway, the co-treatment resulted in a significant 8.4-fold reduction in the expression level of the SDS gene, which encodes the enzyme responsible for the breakdown of serine to pyruvate. Moreover, co-treatment decreased the gene expression of TH, DDC, and CYP1A1 in tyrosine metabolism. Additionally, we observed that the co-treatment resulted in a significant 146.9-fold reduction in the expression of the DISC1 gene. The alteration in metabolites and transcript expressions might provide information to explain the cytotoxicity of co-treatment of melatonin and oTR in NSCLC cells. Our study presents insights into the synergistic anticancer effect of the co-treatment of melatonin and oTR, which could be a potential future therapeutic strategy for the treatment of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Citocininas , Neoplasias Pulmonares , Melatonina , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Sobrevivência Celular , Metaboloma , Glicina/metabolismo , Glicina/farmacologia , Glicina/uso terapêutico , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo , Linhagem Celular Tumoral
4.
Environ Toxicol ; 39(5): 2732-2740, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251951

RESUMO

BACKGROUND: Cervical cancer, a life-threatening disease, is the seventh most commonly detected cancer among women throughout the world. The present study investigated the effect of tretinoin on cervical cancer growth and metastasis in vitro and in vivo in the mice model. MATERIALS AND METHODS: Cell Counting Kit-8, clonogenic survival, and transwell chamber assays were used for determination cells proliferation, colony formation, and invasiveness. Western blotting assay was used for assessment of protein expression whereas AutoDock Vina and Discovery studio software for in silico studies. RESULTS: Tretinoin treatment significantly (p < .05) reduced the proliferation of HT-3 and Caski cells in concentration-based manner. Incubation with tretinoin caused a significant decrease in clonogenic survival of HT-3 and Caski cells compared with the control cultures. The invasive potential of HT-3 cells was decreased to 18%, whereas that of Caski cells to 21% on treatment with 8 µM concentration of tretinoin. In HT-3 cells, tretinoin treatment led to a prominent reduction in p-focal adhesion kinase (FAK), matrix metalloproteinases (MMP)-2, and MMP-9 expression in HT-3 cells. Treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. The metastasis of tumor in model cervical cancer mice group was effectively inhibited in spleen, intestines, and peritoneal cavity. In silico studies showed that tretinoin interacts with alanine, proline, isoleucine, and glycine amino acid residues of FAK protein to block its activation. The 2-dimensional diagram of interaction of tretinoin with FAK protein revealed that tretinoin binds to alanine and glycine amino acids through conventional hydrogen bonding. CONCLUSION: In summary, tretinoin suppressed the proliferation, colony formation, and invasiveness of cervical cancer cells in vitro. It decreased the expression of activated focal adhesion kinase, MMP-2, and MMP-9 in HT-3 cells in dose-dependent manner. In silico studies showed that tretinoin interacts with alanine and glycine amino acids through conventional hydrogen bonding. In vivo data demonstrated that treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. Therefore, tretinoin can be developed as an effective therapeutic agent for cervical cancer treatment.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Neoplasias do Colo do Útero/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Linhagem Celular Tumoral , Regulação para Baixo , Metaloproteinase 9 da Matriz/metabolismo , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Alanina/metabolismo , Alanina/farmacologia , Alanina/uso terapêutico , Glicina/metabolismo , Glicina/farmacologia , Glicina/uso terapêutico , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Aminoácidos/uso terapêutico , Invasividade Neoplásica , Movimento Celular
5.
Nature ; 626(8000): 836-842, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267582

RESUMO

HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus1,2. Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore3. This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine-glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport4. By performing an in vitro dissection of the nuclear pore complex, we show that a pocket on the surface of the HIV capsid similarly interacts with FG motifs from multiple nucleoporins and that this interaction licences capsids to penetrate FG-nucleoporin condensates. This karyopherin mimicry model addresses a key conceptual challenge for the role of the HIV capsid in nuclear entry and offers an explanation as to how an exogenous entity much larger than any known cellular cargo may be able to non-destructively breach the nuclear envelope.


Assuntos
Proteínas do Capsídeo , Glicina , HIV , Carioferinas , Mimetismo Molecular , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Fenilalanina , Humanos , Transporte Ativo do Núcleo Celular , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , Dipeptídeos/química , Dipeptídeos/metabolismo , Glicina/metabolismo , HIV/química , HIV/metabolismo , Técnicas In Vitro , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Carioferinas/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/virologia , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Permeabilidade , Fenilalanina/metabolismo , Solubilidade , Internalização do Vírus , Capsídeo/química , Capsídeo/metabolismo
6.
Cell Metab ; 36(1): 116-129.e7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171331

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado Gorduroso , Animais , Camundongos , Acetaminofen/toxicidade , Carbono , Glutationa/metabolismo , Glicina/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Serina/metabolismo
7.
Plant Cell ; 36(2): 404-426, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37804096

RESUMO

L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen (N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of the biological relevance of the Ser-Gly-1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Serina/metabolismo , Glicina/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Arabidopsis/metabolismo , Redes e Vias Metabólicas/genética , Enxofre/metabolismo , Desenvolvimento Vegetal
8.
Blood ; 143(2): 124-138, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748139

RESUMO

ABSTRACT: Aged hematopoietic stem cells (HSCs) exhibit compromised reconstitution capacity. The molecular mechanisms behind this phenomenon are not fully understood. Here, we observed that the expression of FUS is increased in aged HSCs, and enforced FUS recapitulates the phenotype of aged HSCs through arginine-glycine-glycine-mediated aberrant FUS phase transition. By using Fus-gfp mice, we observed that FUShigh HSCs exhibit compromised FUS mobility and resemble aged HSCs both functionally and transcriptionally. The percentage of FUShigh HSCs is increased upon physiological aging and replication stress, and FUSlow HSCs of aged mice exhibit youthful function. Mechanistically, FUShigh HSCs exhibit a different global chromatin organization compared with FUSlow HSCs, which is observed in aged HSCs. Many topologically associating domains (TADs) are merged in aged HSCs because of the compromised binding of CCCTC-binding factor with chromatin, which is invoked by aberrant FUS condensates. It is notable that the transcriptional alteration between FUShigh and FUSlow HSCs originates from the merged TADs and is enriched in HSC aging-related genes. Collectively, this study reveals for the first time that aberrant FUS mobility promotes HSC aging by altering chromatin structure.


Assuntos
Envelhecimento , Células-Tronco Hematopoéticas , Camundongos , Animais , Envelhecimento/fisiologia , Fenótipo , Células-Tronco Hematopoéticas/metabolismo , Cromatina/metabolismo , Glicina/metabolismo
9.
Free Radic Biol Med ; 210: 258-270, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042221

RESUMO

One of the major pathological processes in cataracts has been identified as ferroptosis. However, studies on the iron metabolism mechanism in lens epithelial cells (LECs) and the methods of effectively alleviating ferroptosis in LECs are scarce. Along these lines, we found that in the ultraviolet radiation b (UVB) induced cataract model in vitro and in vivo, the ferritin of LECs is over-degraded by lysosomes, resulting in the occurrence of iron homeostasis disorder. Glycine can affect the ferritin degradation through the proton-coupled amino acid transporter (PAT1) on the lysosome membrane, further upregulating the content of nuclear factor erythrocyte 2 related factor 2 (Nrf2) to reduce the damage of LECs from two aspects of regulating iron homeostasis and alleviating oxidative stress. By co-staining, we further demonstrate that there is a more sensitive poly-(rC)-binding protein 2 (PCBP2) transportation of iron ions in LECs after UVB irradiation. Additionally, this study illustrated the increased expression of nuclear receptor coactivator 4 (NCOA4) in NRF2-KO mice, indicating that Nrf2 may affect ferritin degradation by decreasing the expression of NCOA4. Collectively, glycine can effectively regulate cellular iron homeostasis by synergistically affecting the lysosome-dependent ferritin degradation and PCBP2-mediated ferrous ion transportation, ultimately delaying the development of cataracts.


Assuntos
Catarata , Ferritinas , Camundongos , Animais , Ferritinas/metabolismo , Glicina/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Raios Ultravioleta , Ferro/metabolismo , Células Epiteliais/metabolismo , Catarata/metabolismo , Homeostase/fisiologia , Lisossomos/metabolismo
10.
Int J Phytoremediation ; 26(6): 816-837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37994831

RESUMO

Glyphosate (Gly) and its formulations are broad-spectrum herbicides globally used for pre- and post-emergent weed control. Glyphosate has been applied to terrestrial and aquatic ecosystems. Critics have claimed that Gly-treated plants have altered mineral nutrition and increased susceptibility to plant pathogens because of Gly ability to chelate divalent metal cations. Still, the complete resistance of Gly indicates that chelation of metal cations does not play a role in herbicidal efficacy or have a substantial impact on mineral nutrition. Due to its extensive and inadequate use, this herbicide has been frequently detected in soil (2 mg kg-1, European Union) and in stream water (328 µg L-1, USA), mostly in surface (7.6 µg L-1, USA) and groundwater (2.5 µg L-1, Denmark). International Agency for Research on Cancer (IARC) already classified Gly as a category 2 A carcinogen in 2016. Therefore, it is necessary to find the best degradation techniques to remediate soil and aquatic environments polluted with Gly. This review elucidates the effects of Gly on humans, soil microbiota, plants, algae, and water. This review develops deeper insight toward the advances in Gly biodegradation using microbial communities. This review provides a thorough understanding of Gly interaction with mineral elements and its limitations by interfering with the plants biochemical and morphological attributes.


Glyphosate (Gly) contamination in water, soil, and crops is an eminent threat globally. Various advanced and integrated approaches have been reported to remediate Gly contamination from the water-soil-crop system. This review elucidates the effects of Gly on human health, soil microbial communities, plants, algae, and water. This review develops deeper insight into the advances in Gly biodegradation using microbial communities, particularly soil microbiota. This review provides a brief understanding of Gly interaction with mineral elements and its limitations in interfering with the plants biochemical and morphological attributes.


Assuntos
Herbicidas , Microbiota , Humanos , Glifosato , Solo , Glicina/metabolismo , Biodegradação Ambiental , Herbicidas/metabolismo , Cátions , Minerais
11.
PLoS One ; 18(12): e0295291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060597

RESUMO

Aflatoxin B1 (AFB1), with the strong toxicity and carcinogenicity, has been reported to great toxicity to the liver and other organs of animals. It cause huge economic losses to breeding industry, including the aquaculture industry. Chinese mitten crabs (Eriocheir sinensis), as one of important species of freshwater aquaculture in China, are deeply disturbed by it. However, the molecular and metabolic mechanisms of hepatopancreas and ovary in crabs underlying coping ability are still unclear. Hence, we conducted targeted injection experiment with or without AFB1, and comprehensively analyzed transcriptome and metabolomics of hepatopancreas and ovary. As a result, 210 and 250 DEGs were identified in the L-C vs. L-30 m and L-C vs. L-60 m comparison, among which 14 common DEGs were related to six major functional categories, including antibacterial and detoxification, ATP energy reaction, redox reaction, nerve reaction, liver injury repair and immune reaction. A total of 228 and 401 DAMs in the ML-C vs. ML-30 m and ML-C vs. ML-60 m comparison both enriched 12 pathways, with clear functions of cutin, suberine and wax biosynthesis, tyrosine metabolism, purine metabolism, nucleotide metabolism, glycine, serine and threonine metabolism, ABC transporters and tryptophan metabolism. Integrated analysis of metabolomics and transcriptome in hepatopancreas discovered three Co-enriched pathways, including steroid biosynthesis, glycine, serine and threonine metabolism, and sphingolipid metabolism. In summary, the expression levels and functions of related genes and metabolites reveal the regulatory mechanism of Chinese mitten crab (Eriocheir sinensis) adaptability to the Aflatoxin B1, and the findings contribute to a new perspective for understanding Aflatoxin B1 and provide some ideas for dealing with it.


Assuntos
Braquiúros , Transcriptoma , Animais , Feminino , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Melhoramento Vegetal , Glicina/metabolismo , Serina/metabolismo , Treonina/metabolismo , Braquiúros/genética , Hepatopâncreas/metabolismo
12.
Biol Direct ; 18(1): 73, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946250

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is characterized by high proliferation and limited differentiation. The altered expression of the p53 family members, and specifically of p63, represents a pivotal event in the pathogenesis of HNSCC. Physiologically, p63 affects metabolism through the direct transactivation of the enzyme hexokinase 2, and subsequently controls the proliferation of epithelial cells; nonetheless, its role in cancer metabolism is still largely unclear. The high energetic demand of cancer and the consequent needs of a metabolic reshape, also involve the serine and glycine catabolic and anabolic pathways, including the one carbon metabolism (OCM), to produce energetic compounds (purines) and to maintain cellular homeostasis (glutathione and S-adenosylmethionine). RESULTS: The involvement in serine/glycine starvation by other p53 family members has been reported, including HNSCC. Here, we show that in HNSCC p63 controls the expression of the enzymes regulating the serine biosynthesis and one carbon metabolism. p63 binds the promoter region of genes involved in the serine biosynthesis as well as in the one carbon metabolism. p63 silencing in a HNSCC cell line affects the mRNA and protein levels of these selected enzymes. Moreover, the higher expression of TP63 and its target enzymes, negatively impacts on the overall survival of HNSCC patients. CONCLUSION: These data indicate a direct role of p63 in the metabolic regulation of HNSCC with significant clinical effects.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , Glicina/genética , Glicina/metabolismo , Carbono , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
13.
Nat Commun ; 14(1): 6246, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803016

RESUMO

Cancer cachexia is a complex metabolic disorder accounting for ~20% of cancer-related deaths, yet its metabolic landscape remains unexplored. Here, we report a decrease in B vitamin-related liver enzymes as a hallmark of systemic metabolic changes occurring in cancer cachexia. Metabolomics of multiple mouse models highlights cachexia-associated reductions of niacin, vitamin B6, and a glycine-related subset of one-carbon (C1) metabolites in the liver. Integration of proteomics and metabolomics reveals that liver enzymes related to niacin, vitamin B6, and glycine-related C1 enzymes dependent on B vitamins decrease linearly with their associated metabolites, likely reflecting stoichiometric cofactor-enzyme interactions. The decrease of B vitamin-related enzymes is also found to depend on protein abundance and cofactor subtype. These metabolic/proteomic changes and decreased protein malonylation, another cachexia feature identified by protein post-translational modification analysis, are reflected in blood samples from mouse models and gastric cancer patients with cachexia, underscoring the clinical relevance of our findings.


Assuntos
Niacina , Neoplasias Gástricas , Complexo Vitamínico B , Camundongos , Animais , Humanos , Caquexia/etiologia , Caquexia/metabolismo , Proteômica , Piridoxina , Vitamina B 6 , Fígado/metabolismo , Glicina/metabolismo
14.
eNeuro ; 10(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37903619

RESUMO

Human startle disease is associated with mutations in distinct genes encoding glycine receptors, transporters or interacting proteins at glycinergic synapses in spinal cord and brainstem. However, a significant number of diagnosed patients does not carry a mutation in the common genes GLRA1, GLRB, and SLC6A5 Recently, studies on solute carrier 7 subfamily 10 (SLC7A10; Asc-1, alanine-serine-cysteine transporter) knock-out (KO) mice displaying a startle disease-like phenotype hypothesized that this transporter might represent a novel candidate for human startle disease. Here, we screened 51 patients from our patient cohort negative for the common genes and found three exonic (one missense, two synonymous), seven intronic, and single nucleotide changes in the 5' and 3' untranslated regions (UTRs) in Asc-1. The identified missense mutation Asc-1G307R from a patient with startle disease and developmental delay was investigated in functional studies. At the molecular level, the mutation Asc-1G307R did not interfere with cell-surface expression, but disrupted glycine uptake. Substitution of glycine at position 307 to other amino acids, e.g., to alanine or tryptophan did not affect trafficking or glycine transport. By contrast, G307K disrupted glycine transport similar to the G307R mutation found in the patient. Structurally, the disrupted function in variants carrying positively charged residues can be explained by local structural rearrangements because of the large positively charged side chain. Thus, our data suggest that SLC7A10 may represent a rare but novel gene associated with human startle disease and developmental delay.


Assuntos
Glicina , Receptores de Glicina , Camundongos , Animais , Humanos , Receptores de Glicina/metabolismo , Glicina/metabolismo , Mutação de Sentido Incorreto , Mutação , Alanina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo
15.
Appl Microbiol Biotechnol ; 107(24): 7403-7416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37773218

RESUMO

Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in Cordyceps militaris. To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett-Burman, and central composite designs in C. militaris mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and cns1-3 in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2-7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in C. militaris mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism. KEY POINTS: • Cordycepin production in the CCDmax group was 5.2-fold than that of the control. • Glucose uptake of the CCDmax group was accelerated and cell wall was damaged. • The metabolic flux was concentrated to the cordycepin synthesis pathway.


Assuntos
Cordyceps , Selênio , Selênio/metabolismo , Xilose/metabolismo , Ferro/metabolismo , Glicina/metabolismo , Histidina/metabolismo , Desoxiadenosinas/metabolismo , Glucose/metabolismo , Fosfatos/metabolismo
16.
Transl Psychiatry ; 13(1): 273, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524707

RESUMO

The endocannabinoid system (ECS) plays a key modulatory role during synaptic plasticity and homeostatic processes in the brain and has an important role in the neurobiological processes underlying drug addiction. We have previously shown that an elevated ECS response to psychostimulant (cocaine) is involved in regulating the development and expression of cocaine-conditioned reward and sensitization. We therefore hypothesized that drug-induced elevation in endocannabinoids (eCBs) and/or eCB-like molecules (eCB-Ls) may represent a protective mechanism against drug insult, and boosting their levels exogenously may strengthen their neuroprotective effects. Here, we determine the involvement of ECS in alcohol addiction. We first measured the eCBs and eCB-Ls levels in different brain reward system regions following chronic alcohol self-administration using LC-MS. We have found that following chronic intermittent alcohol consumption, N-oleoyl glycine (OlGly) levels were significantly elevated in the prefrontal cortex (PFC), and N-oleoyl alanine (OlAla) was significantly elevated in the PFC, nucleus accumbens (NAc) and ventral tegmental area (VTA) in a region-specific manner. We next tested whether exogenous administration of OlGly or OlAla would attenuate alcohol consumption and preference. We found that systemic administration of OlGly or OlAla (60 mg/kg, intraperitoneal) during intermittent alcohol consumption significantly reduced alcohol intake and preference without affecting the hedonic state. These findings suggest that the ECS negatively regulates alcohol consumption and boosting selective eCBs exogenously has beneficial effects against alcohol consumption and potentially in preventing relapse.


Assuntos
Cocaína , Glicina , Camundongos , Animais , Glicina/farmacologia , Glicina/metabolismo , Etanol/metabolismo , Encéfalo , Núcleo Accumbens , Recompensa , Área Tegmentar Ventral
17.
Neuroscience ; 525: 38-46, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37295597

RESUMO

Astrocytes have been increasingly acknowledged to play active roles in regulating synaptic transmission and plasticity. Through a variety of metabotropic and ionotropic receptors expressed on their surface, astrocytes detect extracellular neurotransmitters, and in turn, release gliotransmitters to modify synaptic strength, while they can also alter neuronal membrane excitability by modulating extracellular ionic milieu. Given the seemingly large repertoire of synaptic modulation, when, where and how astrocytes interact with synapses remain to be fully understood. Previously, we have identified a role for astrocyte NMDA receptor and L-VGCCs signaling in heterosynaptic presynaptic plasticity and promoting the heterogeneity of presynaptic strengths at hippocampal synapses. Here, we have sought to further clarify the mode by which astrocytes regulate presynaptic plasticity by exploiting a reduced culture system to globally evoke NMDA receptor-dependent presynaptic plasticity. Recording from a postsynaptic neuron intracellularly loaded with BAPTA, briefly bath applying NMDA and glycine induces a stable decrease in the rate of spontaneous glutamate release, which requires the presence of astrocytes and the activation of A1 adenosine receptors. Upon preventing astrocyte calcium signaling or blocking L-VGCCs, NMDA + glycine application triggers an increase, rather than a decrease, in the rate of spontaneous glutamate release, thereby shifting the presynaptic plasticity to promote an increase in strength. Our findings point to a crucial and surprising role of astrocytes in controlling the polarity of NMDA receptor and adenosine-dependent presynaptic plasticity. Such a pivotal mechanism unveils the power of astrocytes in regulating computations performed by neural circuits and is expected to profoundly impact cognitive processes.


Assuntos
Astrócitos , Sinalização do Cálcio , Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Transmissão Sináptica/fisiologia , Sinapses/metabolismo , Glutamatos/metabolismo , Glicina/metabolismo , Cálcio/metabolismo , Plasticidade Neuronal
18.
Reprod Sci ; 30(11): 3285-3295, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37264261

RESUMO

Identifying the metabolome of human seminal plasma (HSP) is a new research area to screen putative biomarkers of infertility. This case-control study was performed on HSP specimens of 15 infertile patients with teratozoospermia (defined as normal sperm morphology < 4%) and 12 confirmed fertile normozoospermic men as the control group to investigate the seminal metabolic signature and whether there are differences in the metabolome between two groups. HSPs were subjected to LC-MS-MS analysis. MetaboAnalyst5.0 software was utilized for statistical analysis. Different univariate and multivariate analyses were used, including T-tests, fold change analysis, random forest (RF), and metabolite set enrichment analysis (MSEA). Teratozoospermic samples contained seventeen significantly different amino acids. Upregulated metabolites include glutamine, asparagine, and glycylproline, whereas downregulated metabolites include cysteine, γ-aminobutyric acid, histidine, hydroxylysine, hydroxyproline, glycine, proline, methionine, ornithine, tryptophan, aspartic acid, argininosuccinic acid, α-aminoadipic acid, and ß-aminoisobutyric acid. RF algorithm defined a set of 15 metabolites that constitute the significant features of teratozoospermia. In particular, increased glutamine, asparagine, and decreased cysteine, tryptophan, glycine, and valine were strong predictors of teratozoospemia. The most affected metabolic pathways in teratozoospermic men are the aminoacyl-tRNA, arginine, valine-leucine, and isoleucine biosynthesis. Altered metabolites detected in teratozoospermia were responsible for various roles in sperm functions that classified into four subgroups as follows: related metabolites to antioxidant function, energy production, sperm function, and spermatogenesis. The altered amino acid metabolome identified in this study may be related to the etiology of teratozoospermia, and may provide novel insight into potential biomarkers of male infertility for therapeutic targets.


Assuntos
Aminoácidos , Teratozoospermia , Humanos , Masculino , Aminoácidos/análise , Aminoácidos/metabolismo , Sêmen/metabolismo , Teratozoospermia/metabolismo , Triptofano/análise , Triptofano/metabolismo , Asparagina/análise , Asparagina/metabolismo , Cromatografia Líquida , Cisteína/metabolismo , Glutamina/análise , Glutamina/metabolismo , Estudos de Casos e Controles , Espectrometria de Massas em Tandem , Glicina/análise , Glicina/metabolismo , Valina/análise , Valina/metabolismo , Biomarcadores/metabolismo
19.
Environ Toxicol Pharmacol ; 101: 104184, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37328086

RESUMO

This study aimed to assess whether perinatal exposure to propiconazole (PRO), glyphosate (GLY) or their mixture (PROGLY) alters key endocrine pathways and the development of the male rat mammary gland. To this end, pregnant rats were orally exposed to vehicle, PRO, GLY, or a mixture of PRO and GLY from gestation day 9 until weaning. Male offspring were euthanized on postnatal day (PND) 21 and PND60. On PND21, GLY-exposed rats showed reduced mammary epithelial cell proliferation, whereas PRO-exposed ones showed increased ductal p-Erk1/2 expression without histomorphological alterations. On PND60, GLY-exposed rats showed reduced mammary gland area and estrogen receptor alpha expression and increased aromatase expression, whereas PRO-exposed ones showed enhanced lobuloalveolar development and increased lobular hyperplasia. However, PROGLY did not modify any of the endpoints evaluated. In summary, PRO and GLY modified the expression of key molecules and the development of the male mammary gland individually but not together.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Triazóis , Gravidez , Feminino , Ratos , Animais , Masculino , Humanos , Triazóis/toxicidade , Glicina/toxicidade , Glicina/metabolismo , Hiperplasia/metabolismo , Glândulas Mamárias Animais , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Glifosato
20.
Methods Enzymol ; 684: 191-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37230589

RESUMO

Protein N-terminal myristoylation is a lipidic modification typically occurring to the α-amino group of N-terminal glycine residues of proteins. It is catalyzed by the N-myristoyltransferase (NMT) enzyme family. Many studies in the past three decades have highlighted the importance of N-terminal glycine myristoylation as it affects protein localization, protein-protein interaction, and protein stability, thereby regulating multiple biological processes, including immune cell signaling, cancer progression, and infections. This book chapter will present protocols for using alkyne-tagged myristic acid to detect the N-myristoylation of targeted proteins in cell lines and compare global N-myristoylation levels. We then described a protocol of SILAC proteomics that compare the levels of N-myristoylation on a proteomic scale. These assays allow for the identification of potential NMT substrates and the development of novel NMT inhibitors.


Assuntos
Proteínas , Proteômica , Ácido Mirístico/metabolismo , Proteômica/métodos , Proteínas/química , Aciltransferases/genética , Aciltransferases/metabolismo , Indicadores e Reagentes , Glicina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA